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ABSTRACT 

Satellite imagery utilization is an oversubscribed problem and therefore requires 

optimum scheduling methodology to maximize the use of the systems. There are 

many methods to determine performance of a scheduling algorithm, many of 

which rely on comparison to already established standards. Based on Taguchi’s 

quality loss function formulation that was developed for the manufacturing 

industry, four general quality loss functions are presented. These loss functions 

show the dollars lost when two different performances are changed. The two 

examined are (1) system response time to user image request and (2) total 

number of image requests satisfied. The general loss function is applied to the 

satellite scheduling problem to associate losses captured by the algorithm into a 

common unit, dollars lost. These loss functions, once developed, help decision 

makers determine how best to utilize their systems in terms of expected bottom 

line value to the company.  
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EXECUTIVE SUMMARY 

Determining how to make decisions and communicating those decisions to the 

key stakeholders is an important aspect of systems engineering. Given the very 

complex nature of many of the systems in today’s world, having a methodology 

to compare complex factors in common terms, according to Langford, of general 

energy (joules or electron volts), matter (in terms of mass, e.g., kilograms or 

pounds), material wealth (e.g., dollars), or information (bits of data) (EMMI) is a 

desirable objective (Langford 2012).  

Optimally scheduling satellites has been a focused research area since 

the 1960s when satellites where first used for taking images. Demand for 

intelligence from satellites has only increased. Therefore, different optimization 

techniques have been proposed over those 50 years, all trying to accomplish 

maximum performance of collecting imagery from a satellite constellation.  

Determining quality of a function is often referred to as conformance to 

specifications. Taguchi transformed the understanding of quality in the 

manufacturing industry by reframing the problem. Instead of looking at quality as 

a binary good or bad, he posed the construct of a loss function that mapped 

quality of achieving a target performance (or an event) within an upper and lower 

variance. He realized that consumers see a performance difference within these 

specifications the moment they deviate from the optimum target value. He then 

defined quality loss as the total loss to society for a part that operates outside the 

limits of its specifications from birth to eventual disposal (Taguchi, Chowdhury, 

and Wu 2005). One of the main benefits of this methodology is that it relates 

quality, an abstract idea, to quantifiable terms of dollars lost due to deviation from 

specifications. This relation makes the decision-making process about whether to 

invest in better machinery/processes in the factory a straight forward dollar 

comparison of alternatives and performances. A loss function is a graphical 

representation of the loss or regret associated with an event. 
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A general quality loss function, which applies to lifecycle issues (e.g., all 

phases of the acquisition process), was developed by Langford and Choi. This 

general quality loss function is applicable to almost all systems once it is 

developed and it is determined which phase of the acquisition cycle a product is 

in. The user need only to develop the individual loss function relating to the 

decision that is being made and can determine the loss in any of the units of 

general energy (joules or electron volts), matter (e.g., mass in kilograms or 

pounds), material wealth (e.g., dollars), or information (bits of data) (EMMI) (Choi 

and Langford 2008).  

The general loss function methodology is then applied to the problem of 

satellite optimization to put different outcomes in terms of losses of EMMI, in this 

case dollars. The ability to put different performances of the optimization problem 

in terms of dollars allows satellite operators to better determine satellite 

schedules for optimum bottom line performance. 
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I. INTRODUCTION 

A. BACKGROUND 

Determining how to make decisions and communicating those decisions 

to the key stakeholders is a key aspect of systems engineering. Many of the tools 

and techniques that have been developed in the last 100 years in project 

management and systems engineering have revolved around making decisions 

in the best way possible. Given the very complex nature of many of the systems 

in today’s world, having a methodology to compare complex factors in common 

terms of general energy (joules or electron volts), mass (kilograms or pounds), 

material wealth (e.g., dollars), or information (bits of data) (EMMI) is a desirable 

objective (Langford 2012). 

Optimally scheduling satellites has been a focused research area since 

the 1960s when satellites where first used for taking images. In the 50 years 

since, the demand for intelligence from satellites has only increased. Satellite 

scheduling can now be thought of as an oversubscribed problem, meaning in 

general, there are always far more targets available to take an image of than 

available satellites or bandwidth to satisfy all the requests (Yao et al. 2010, 10–

18). Therefore, a multitude of different optimization techniques have been 

proposed throughout the years, all trying to accomplish specific goals. Some 

optimize for the most number of images, some factor in priority of images, try to 

maximize profit, others the life of the satellite. There is also a push to automate 

the scheduling problem and make running the calculations as fast as possible, in 

case changes need to be made. 

Determining quality of a system function is often referred to as 

conformance to the specifications of the performance of that function. Taguchi 

transformed the understanding of quality in the manufacturing industry by 

reframing the problem. Instead of looking as quality as a binary good or bad, he 

realize d that consumers see a performance difference on items the moment they 



 2 

deviate from the optimum target value, m. He then defined quality loss as the 

total loss to society for a bad part initial concept development and prototyping to 

eventual disposal (i.e., throughout its lifecycle). Realizing that every single part 

would have its own, unique quality loss function, Taguchi used a discrete set of 

quadratic equations to model the quality loss on all parts, making the 

mathematics easier for the user (Taguchi, Chowdhury, and Wu 2005). This 

quality loss function, when used correctly, helps manufacturers determine when 

they should invest in their manufacturing and design process and when it is 

better not to invest. One of the main benefits of this methodology is that it puts 

quality, an abstract idea, in terms of dollars lost due to manufacturing variation. 

This portrayal makes the decision-making process about whether to invest in 

better machinery/processes in the factory a straight forward dollar comparison.  

Langford and Choi took Taguchi’s idea of quality loss in the manufacturing 

field, and applied the idea to weapon system acquisition (Choi and Langford 

2008). They developed a general quality loss function, which can be applied to all 

four stages of a weapons systems lifecycle (concept and technology 

development, system development and demonstration, production and 

deployment, sustainment and disposal). This general quality loss function is 

applicable to all systems that achieve sustainment through competing or 

opposing uses of resources. This tension creates the forces that signify the 

tradeoffs required to ultimately satisfy the customers for imagery. The basic 

physics behind satellite motion and therefore the scheduling of satellite imagery 

depends on the orbital motion, also known as the two-body problem (Curtis, 

2011). In Appendix A, quaternions are introduced as a method to show the 

fundamental tension within the satellite motion equations and therefore show a 

loss function is appropriate to describe a performance of the system. The phase 

of the acquisition cycle in part determines the shape of the quality loss function. 

The user need only to develop the individual loss function relating to the decision 

that is being made and then determine the loss in any of the appropriate units 

EMMI.  
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B. OBJECTIVES, METHOD, AND RESEARCH QUESTIONS 

The objective of this thesis is to determine if the general quality loss 

function, when applied to the satellite optimization problem, can provide a 

decision-making tool for satellite developers and operators to optimize imagery 

collection. From a methodological perspective, a more thorough background in 

the satellite optimization is presented. Then, a specific satellite optimization is 

investigated. This optimization was selected because it clearly shows the tension 

between two important factors in optimization, (1) how quickly do we need to 

respond to image requests and (2) how many image requests can we 

accomplish. The rationale for these two factors is they represent the tension by 

which optimization is achieved. For example, if a user requested 10 different 

images demanding a very fast response from the satellite system to provide the 

requested imagery, then most likely the satellite will need to respond in a non-

optimal way to accomplish the requests. However, if the response time can be 

slower, then the satellite can schedule more images in-between those 10 

requests and in general take more images. 

After the optimization algorithm is discussed, a stakeholder analysis is 

accomplished. The stakeholder analysis revealed three general classes of 

stakeholders when looking at how fast image requests need to be accomplished. 

These three distinct time frames are used to make three different quality loss 

functions and provide insight into the analysis of the general loss function for use 

with the satellite optimization problem.  

After the stakeholder analysis, Taguchi’s loss function is discussed to 

establish the basis for applying the quality loss function to capture the tension in 

the scheduling process. Taguchi’s loss function is used in the manufacturing 

industry to determine when making manufacturing and process improvements, 

for the sake of improving product quality, is beneficial to a company in terms of 

expected return on investment (2005). Langford and Choi’s work on the general 

quality loss function is presented that builds upon Taguchi’s concept and applies 

it more broadly to the acquisition lifecycle. An abbreviated proof of Langford and 
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Choi’s work in developing the general loss function is presented in the text as 

well as an example application of the general loss function (2012). 

Finally, the general loss function is applied to the satellite optimization 

problem in order to show the different tradeoffs in performance of the 

optimization algorithm in terms of loss of dollars. Stating overall quality (in 

Taguchi’s case) or number of images taken versus how fast image requests must 

be met in terms of dollars helps decision makers think objectively about abstract 

ideas. Therefore, for the application of the satellite optimization problem, four 

different loss functions are developed, and three different optimal loss function 

curves are generated for three different general use cases. General loss curves 

are then shown to apply to the original optimization algorithm and suggestions on 

how these functions would be used by developer and operators in the satellite 

industry are provided.  
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II. SATELLITE OPTIMIZATION ALGORITHM 

A. SATELLITE SCHEDULING 

Earth observation satellites are satellites that use optical or other remote 

sensing payloads to observe and generate images of ground targets (Yao et al. 

2010, 10–18). Since the time satellites first started being used for military and 

civilian applications, there has been interest in taking images of objects on the 

ground. The first successful launch of remote sensing satellite was part of the 

Corona mission, which successfully launched August 10, 1960 (Olsen 2007). 

This satellite accomplished image taking via traditional film; then it dropped film 

cartridges at specified times and was collected on the surface of the earth. Since 

that time, the capabilities of remote sensing satellites have increased in every 

way. Today’s most advanced imaging satellites, such as WorldView-2, can view 

the earth at sub .5 meter resolution in panchromatic (black and white) and has a 

resolution of 1.85 m multispectral (Digital Globe 2014). They also use digital 

imagery and send all saved image information to the ground via radio frequency 

communication with ground stations. 

The demand for satellite images is vast, spanning the industries of 

meteorology, oceanography, fishing, agriculture, biodiversity conservation, 

forestry, landscape, geology, cartography, regional planning, education, 

intelligence, warfare, and remote sensing research, with the desired targets to be 

imaged above that of the available resources (Luccio 2012; Stottler 2010; Olsen 

2007). From the year 2008 to 2013, the total space revenue from remote sensing 

has grown from $700 million to $1.5 billion dollars as the demand for images 

continues to increase in both government and industry markets (Satellite Industry 

Association 2014). In these situations, the field of operations research is valuable 

in trying to optimally utilize such satellites to get the most targets imaged as 

possible. In order to understand the problem better, Figure 1 is introduced. 

Figure 1 is a graphical representation of the satellite imaging process (Yao et al. 

2010, 10–18). Since satellites are restricted in their orbits and are moving very 
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fast (about 8 km/s in low earth orbit) in relation to the ground, a satellite will pass 

a ground target for only a limited time. Depending on target size, this could be a 

fraction of second that the satellite is over the target. The entire imaging capture 

process must then be accomplished in that limited time window when the target 

is within range of the satellite imaging sensor. For targets that are not directly 

under the satellite, most sensing satellites can perform roll operations to rotate 

the sensor or satellite so that the target is imaged. For targets that are close to 

each other but require rolling movements, calculations must be performed to 

ensure the satellite will be able to roll and stabilize before the imaging process 

needs to start. Figure 1 shows a satellite with three targets to image, and targets 

B and C can be seen to require rolling operations to image. 
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Figure 1.  Satellite Image Process (from Yao et al. 2010, 10) 

Given the above definition of the satellite imaging process, the satellite 

scheduling problem can be viewed as a single machine scheduling problem with 

a time window constraint and setup time correlative with the order that targets 

are to be imaged (Yao et al. 2010, 10–18). The problem of scheduling a satellite 

was also determined to be NP-hard, which means the satellite scheduling 

problem is at minimum as hard as solving a non-deterministic polynomial time 

(Barbulescu et al. 2004, 7–34). With the increase of satellites in orbit and 

constellations of satellites being developed, the multi-satellite imaging scheduling 

problem has become a research priority in recent years. There have been 

heuristic algorithm approaches (De Florio 2006; Pemberton and Galiber 2001, 

101–114), meta-heuristics such as evolutionary algorithms (Globus et al. 2003), 
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artificial intelligence techniques (Stottler 2010), and decomposition based 

algorithms (Yao et al. 2010, 10–18). There is also a focus to schedule satellites 

dynamically giving them onboard decision-making capability so that if there are 

environmental factors that would inhibit a particular imaging event (e.g., clouds, 

smoke, or high atmospheric interference) the satellite computers autonomously 

choose a different mission to be accomplished (Pemberton and Greenwald 2002, 

165–171). 

Given the amount of research already accomplished in the field of satellite 

constellation optimization, there are many different algorithms available to select 

in order to solve the problem. Some offer increased computational efficiency over 

others, but with the speed of computers increasing, such gains are becoming 

less important. For the purposes of this research, an algorithm that shows the 

tension between the time available or period and the number of operations to 

make is desirable. When there is a tension between two items, it leads to a 

negotiation between the two factors. Chapter IV will explore the quality loss 

functions role in determining how to model and predict results based on the 

negotiation between two factors. 

B. SELECTED OPTIMIZATION ALGORITHM 

In order to frame the satellite optimizations problem, parameters must be 

established. The following section is an explanation of Sergio De Florio’s 

heuristic based optimization algorithm that shows the desired tension between 

two factors (De Florio 2006). The systems being considered are two or more 

satellites in low or medium earth orbit, one or more ground station and a list of 

targets to be observed. Each satellite will have its own operability and structural 

limitations. The primary constraints for optimizing the system are derived from 

user requests. There are also constraints based on the ground stations, targets, 

system limitations, time constraints, and on-board resources.  
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1. System Constraints 

Since operations planning and scheduling is primarily constrained by user 

requests and mission systems needs typical constraints are included in the 

algorithm. These constraints include: 

1. final product commissioner—method of downloading data 

2. target locations on earth 

3. target dimension and shape 

4. target acquisition time—day or night capture 

5. image resolution—requested by user, depends on satellite 
capability 

6. type of imaging sensor 

7. type of data—if image taking device has different modes 

8. number of images on a target—one, multiple, or periodically 

9. spacecraft azimuth—if user requires spacecraft to be moving in a 
certain direction for data take 

10. spacecraft elevation angle in relation to the target 

11. allowed time window of image request 

12. required response time for image delivery  

13. type of priority 

The next class of constraints is dependent on the Satellites themselves 

and include:  

1. satellite orbit—precise prediction on satellite orbits are completed 
via simulation software on the ground 

2. power storage—how much power is available and how fast it 
charges is modeled for each satellite 

3. power consumption—running tally of all operations must be 
maintained to ensure there is enough power over the scheduling 
horizon 

4. data storage—ensure on-board storage has enough memory to 
store new images without overwriting old ones 

5. payload—type of sensor and its field of view characteristics 

6. data download—rates for different operations are characterized 

7. inter-satellite links—if satellite has capability to send information 
satellite-to-satellite instead of only to ground station 
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For ground stations, both the visibility horizon (how long the satellite will 

be in view of the ground station to communicate) and the handshake time (how 

long it takes to communicate information) is taken into account. Targets are 

modeled as closed contour regions with a certain location on the Earth’s surface 

and defined by a series of points. System limitations and constraints can be 

summarized as time constraints and on-board resource limitations. The following 

time constraints are considered:  

1. assumption that spacecraft can only do one operation at a time 

2. spacecraft revisit limitations on targets—Number of opportunities 
satellite will be within view of the target in the scheduling period 

3. ground station contacts—number of available ground station 
contacts predicted over the scheduling period 

4. attitude maneuvers—time required to adjust to the predicted 
attitude of target for data take 

5. payload management—time required to manage the payloads 
(power on/off, process images, or run heaters) 

The on-board resource limitations considered are:  

1. on-board power availability—continuously monitored during the 
scheduling to ensure enough power is available 

2. limited on-board data-storage—continuously monitored during 
scheduling to ensure enough storage available 

3. sensor operability—minimum and maximum elevation angles to 
target are considered 

4. data-download rate—parameter for each satellite and ground 
station pair defining their data transfer rate 

2. Types of Missions 

After the initial constraints are complete, it helps in the optimization 

algorithm to define a set of standard missions or operations that the satellites will 

be commanded to complete. For this application, the following operations are 

defined: monitoring pass, download pass, image-take, on-line Image-take, inter-

satellite link, and system maintenance. Based on the missions and the 

constraints, a set of temporal reasoning constraints are established (De Florio 

2006). 
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1. An operation is allowed to be commanded by a ground station 
when the time constraints of that operation fall within an allowed 
time window when other operations are happening. 

2. Image-takes, which occur at the same time as ground station 
contact, are grouped together and called an on-line image-take. 

3. An inter-satellite link is allowed if the satellite is within range of a 
separate satellite, which is in contact with a ground station. 

4. For each inter-satellite link, the other linked satellite connected to 
the ground station is associated with the image taking satellite for 
that time window.  

3. Assignment of Priorities 

At this point in the formulation of the optimization, the method of assigning 

priorities is defined. Priority is a value [high (urgent), medium, and low] that helps 

to properly assign image take operations in the order most desired by the user 

and by the operation of satellite itself. All the image take operations are grouped 

first by their respective type then are sorted in the list by their priorities. The first 

priority for assigning location in the queue for each image is the user priority, 

which is assigned by the user for each task (high, medium, and low). Next the 

operation, given a set of equally prioritized operations by the user, sorts the list 

based on type of operations. Ground stations contacts are set to the highest 

priority because these operations by definition cannot be missed unless a direct 

command from the user allows it. Next, online image-takes are prioritized, 

followed by inter-satellite link, and lastly ordinary image-takes are sorted. 

Once the lists are sorted by type and priority, the initial scheduler is run 

and all the satellite ground station passes are first assigned, which means the 

first operations plan will only contain satellite monitoring passes (no image takes 

have been scheduled). Next the scheduler goes through chronologically sorted 

potential task lists for each satellites sequentially. At each step in the schedule, 

the schedule attempts to insert an operation into the schedule that is allowable 

according to the defined constraints above (De Florio 2006). The user priority is 

first considered, and if two items are of the same priority, than the lists are 

scheduled in order by: on-line image-takes, inter-satellite link contact, and image-
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takes. As each task is added into the schedule for each satellite, various checks 

are done to ensure the task is allowed. These include, time checks, spacecraft 

status (battery, storage, or position), and the next opportunity to download image 

is scheduled. 

Since the user defined priority determines where in the queue of 

operations an image take will happen, that is the key item that determines the 

level of performance of the optimization algorithm. Given that, the figure of merit 

that determines the priority is very important. For this optimization, two figures of 

merit were chosen, (1) System response time and (2) number of images. The 

system response time is defined as the amount of time from when an image is 

requested until the image is ready to use. The number of images is the satisfied 

number of requests that were accomplished in the scheduling period. Therefore 

the basic priority assessment rule can be defined as Equation (1), based on 

information from www.stsci.edu: 

 *I *ST      (1) 

where T is the priority value, I is the number of image taking opportunities, S is 

the time slot and ,    are respectively the weights of I and S. The highest 

priority possible is one and the goal is to find the values of   and   to maximize 

the number of satisfied image requests or to minimize the response time. 

Therefore, it can be shown there is a two dimensional space    that must be 

explored (Figure 2).  
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

 

Figure 2.  Space    (from De Florio 2006, 4) 

The two curves that define Figure 2 are relations between   and  , 

which are Equations (2) and (3) respectively: 

 *m    (2) 

 * cos(t)     (3) 

The order that the operations are listed in the queue to be processed depends on 
the value of the priorities. Therefore, from the simple form of Equation 1 it can be 

inferred that with a chosen value of m and 



 remaining constant, the priorities 

assignment order does not change (De Florio 2006). 


  

   
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4. Results of Original Algorithm 

Once the algorithm was developed, De Florio ran some simulations given 

some assumed system constraints and obtained initial results (De Florio 2006). 

While testing the performance of the new scheduling algorithm, a first-in-first-out 

scheduling methodology was used as a comparison. The satellite constellation 

parameters that were used for calculations are show in Table 1.  

Table 1.   Satellite Constellation Constraints (from De Florio 
2006, 5) 

 
 

Once the satellite constraints were loaded into the model, it was assumed 

that only one ground station and one user will be utilizing the system. There were 

620 targets distributed over one week of time and each target was a 7km x 7 km 

square surfaces. Also, there were three simplifying assumptions made for the 

simulation results: (1) all image-takes were performed in one mode, (2) all user 

priorities were the same, and (3) no deadline was assigned to any of the 

requests. In addition to these assumptions, the model itself makes the 

assumption that each satellite can only do one task at a time. This assumption is 

slightly misleading, since some of the single tasks are actually multiple 

operations, like an on-online image take where the satellite is taking images and 
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transmitting them at the same time. Once all constraints were considered and 

lists of different missions, target visibility time windows, ground stations time 

windows, satellite power, and satellite storage requests were generated, then the 

priority lists were made. These lists were made multiple times, varying the value 

of m in Equation 2, trying to find an optimal value for m in terms of maximizing 

the two selected performance metrics, system response time and total number of 

image requests fulfilled. In Figure 3, De Florio shows the two metrics and their 

respective performance as m is varied from zero to 10. An example of the results 

found by De Florio are shown in Figure 3.  

 

Figure 3.  Variation of Number of Satisfied Requests and System 
Response Time with m (from De Florio 2006, 5) 

In doing this initial searching for the optimal value of m, De Florio (2006, 6) 

made the following three key insights:  

1. For each configuration there are two values of m corresponding to 
optimal values of both the figures of merit. 

2. For each figure of merit the variation with m is similar for the two 
different configurations. 

3. The values of m that respectively maximize the number of satisfied 
request and minimize the response time, are akin.  
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While the first two of these insights regarding m are fairly straight forward, 

the last item is surprising. Given that the two figures of merit are in tension with 

one another, why would the values of m, which optimize each of them, be 

similar? The answer is found in his simplifying assumptions. De Florio assumed 

that all image requests were of the same priority and had no time constraints as 

to when they had to be completed (2006). Since the number of high priority 

images is not taken into account, the proposed optimization algorithm results 

have limited value to decision makers who are trying to determine if it is better to 

prioritize the response time of the image requests or how many image requests 

are fulfilled. Therefore, a general loss function was developed, which assists that 

decision by making it easier to determine, in terms of dollars, the optimal system 

response time and number of image requests to fulfill. 
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III. STAKEHOLDER ANALYSIS 

A. DEFINITION OF STAKEHOLDER 

The word ‘stakeholder,’ one who has a stake in the outcome, is 
most typically an entity (a person either acting alone or 
representing an organization) who can influence the 
conceptualization or funding of the development project, or the 
product’s or service’s acceptance, operations, or disposal. 
(Langford 2012)  

Stakeholders are those who affect or are affected by the “decision-making 

activity” that “influences the product or service. In a broader sense, it is someone 

with an” interest “or concern, and specifically someone at risk due to the product 

or service” (Langford 2012). Stakeholders can also be defined by industry, which 

the International Council of Systems Engineers (INCOSE) does by defining 

stakeholders as: “A party having a right, share or claim in a system or in its 

possession of characteristics that meet the party’s needs and expectations” 

(ISO/IEC 2008).  

Looking at a broad scope of definitions of stakeholder, Langford notes 

there are common themes running throughout all the definitions. These themes 

are in fact so broad that in many cases it is better to ask “Who isn’t a 

stakeholder?” instead of “Who are the stakeholders?” These common themes 

include: 

1. The stake holder has an interest in the system under development. 

2. The stakeholder can provide some insight into the system under 
development. 

3. The stakeholder can influence the development of the system. 

4. The stakeholder has an interest in the outcome of the system under 
development (Choi and Langford 2008).  

B. STAKEHOLDER ANALYSIS 

Stakeholder analysis is a most important step in the overarching systems 

engineering methodology because it is vital to first determine the “needs” that 
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must be satisfied that then are winnowed down to the essential requirements that 

drive the development of solution(s). All projects will have a minimum number of 

stakeholders to include the direct customer (the one who pays) and end user of 

the product being developed. However, there are often unstated stakeholders 

who have essential requirements for the project. If these stakeholder’s needs are 

not identified early or not met at all, the cost for development and sustainment 

will increase in later upgrades or may indeed cause the project to fail altogether. 

Therefore, an effective and efficient process of stakeholder analysis is important 

to implement. Following a general five step guideline, with each of the five steps 

having multiple sub-steps, the proper set of functions can be turned into the 

work-breakdown structure, the appropriate processes can be enacted, and the 

relevant requirements can be defined. The overarching framework for 

stakeholder analysis is: “(1) identification of stakeholders; (2) classification of 

potential stakeholders; (3) determination of potential stakeholder and system 

relationships; (4) determination of key system stakeholders; and (5) definition of 

stakeholder requirements” (Langford 2012). 

1. Identification of Potential Stakeholders 

Identification of potential stakeholder is the first step. As stated before, in 

many cases the better question to ask, especially for very important assets like 

satellites, is “Who isn’t a stakeholder?” The initial identification of stakeholders 

should very naturally start with the image needs of the target user(s) of a system 

and the direct customer(s). In almost all new projects, there will be at least one 

driving force behind the project that will be an obvious stakeholder. After this first 

level of identification is complete, the next step is to create scenarios of potential 

stakeholder interactions. These interactions should relate to every aspect of the 

system, how it will be used, the timing, fitment, size, reliability, and cost. Asking 

“What if” questions is also useful at this stage of the brainstorming effort, trying 

tease out any stakeholders missed in the initial round. At this point, a master list 

of stakeholders is created, ready for classification (Langford 2012). 
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2. Classification of Potential Stakeholders 

Classification of potential stakeholders is the second high level step of the 

stakeholder analysis and follows the following four step process: “(1) 

determination of the system boundaries, (2) classification of potential internal 

stakeholders, (3) classification of potential first-order stakeholders, and (4) 

classification of potential second-order stakeholders” (Langford 2012). The first 

step is to define the system boundaries (including physical, functional, and 

behavioral boundaries), which is acknowledged to change over the lifecycle of a 

system. The previously defined use cases and stakeholder interaction scenarios 

will help to define the system boundaries over the lifecycle of a product. Once the 

physical boundary of a system is established, by definition, there are then 

functions of the system inside and outside of the system boundaries. The second 

step of classification of the stakeholders is to determine all the potential internal 

stakeholders who are affected by either internal or external functions. Internal 

stakeholders are those that only interact with internal system elements or with 

other stakeholders that are classified as internal stakeholders. Thirdly, the set of 

first-order stakeholders is established. First-order stakeholders are those who are 

in direct contact with the system, but do not have direction interaction with the 

internal stakeholders. Finally, second-order stakeholders are defined, which are 

those stakeholders that are connected indirectly to the system via interaction with 

first-order stakeholders. The combination of the first and second-order 

stakeholders are classified as the boundary stakeholders because they interact 

with external entities across the system boundary. Thus, classification of system 

stakeholders is complete with a list of internal and external stakeholders 

(Langford 2012). 

3. Determining Relationships between Potential Stakeholders 
and the System 

The third step in the stakeholder analysis is to determine the relationship 

between the potential stakeholder and the system that is used to prioritize the 

stakeholders. Prioritizing the stakeholders is important as it facilitates an early 



 20 

determination as to the key stakeholder needs, likely problems that can be 

solved and requirements that should be considered while developing the 

functional analysis of the system. This step is accomplished by grouping 

stakeholders into their respective system roles, which then helps to prioritize and 

choose the appropriate stakeholder inputs (Choi and Langford 2008). 

4. Identify Key System Stakeholders 

The fourth step in stakeholder analysis is to identify key system 

stakeholders. Key system stakeholders are ranked based on their overall 

influence and importance for the system across the lifecycle. At various phases 

in the lifecycle, some stakeholders have greater importance to the eventual 

outcomes and then other stakeholders. It is incumbent on the elicitation process 

to determine those significant impacts early in the development cycle, most 

importantly before design has commenced. After determination of the key 

stakeholders, three different sets of stakeholders will be established: primary, 

secondary, and tertiary. Primary stakeholders are defined by those with direct 

input into the development of the system’s functional analysis and in determining 

how the system will be measured for effectiveness. Secondary stakeholders 

have limited weighting in the development of the functional analysis of the 

system and in determining how the system will be measured for effectiveness. 

However, secondary stakeholders will be incorporated into the system whenever 

possible within the system boundaries. Lastly, tertiary stakeholders are 

established and are not considered in the functional analysis or the measures of 

effectiveness. 

5. Establish Stakeholder Requirements 

Lastly in the stakeholder analysis, the stakeholder requirements are 

established. Defining the stakeholder requirements follows a three step 

methodology as follows: (1) determine the problem, (2) define the need, and (3) 

define the requirements. A stakeholder problem occurs “Whenever there is a 

difference between what can be done and what you want to do, and you do not 
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know how to achieve the desire…” (Langford 2012). For each stakeholder 

problem statement, stakeholder needs can be found. A need is defined as “…a 

condition faced by the stakeholder that requires a solution to alleviate it” 

(Langford 2012). Finally, stakeholder requirements are derived from the needs 

and form the requirements of the development or use of the final system. 

C. IMAGING SATELLITE STAKEHOLDER ANALYSIS 

The above stakeholder analysis process is a key piece of the systems 

engineering model. For the sake of this thesis however, it is assumed that the 

systems being used are already developed and operational. Since there are 

already multiple constellations of government and commercial imaging satellites, 

a stakeholder analysis for the development of a new satellite is outside of the 

scope of this research. However, determining a set of key users for satellite 

imagery is appropriate and useful. Specifically, finding users of satellite imagery 

and grouping them according to their required system response time is desired. 

Getting a range of users is desired because one of the two parameters of the 

optimization algorithm discussed above is system response time. In order to 

develop a loss function for the system response time, a set of user requirements 

must be determined to establish how fast image requests must be satisfied. After 

a set of users is established, a determination of different response time ranges is 

investigated to determine if there are common requirements.  

First, an unsorted, incomplete list of users of satellite imagery is 

established. Common potential uses of imagery are in the fields of meteorology, 

oceanography, fishing, agriculture, biodiversity conservation, forestry, landscape, 

geology, cartography, regional planning, education, intelligence, warfare, and 

remote sensing research (Luccio 2012; Olsen 2007; Stottler 2010). It can be 

seen in Figure 4 that in these various fields, there is a high disparity of how 

quickly new images need to be available to be utilized. For applications where 

there are fast changes happening, such as warfare, forest fires, and severe 

weather, images over 24–48 hours old will have little to no utility. However, in the 
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opposite extreme, items like cartography, regional planning, and landscape 

monitoring might only require images to be updated on a bi-annual basis or 

longer. There is also a third general group of users who require images within a 

two- or three-week window. These would be users monitoring tidal action, algal 

blossoms, ice flows, fisheries, and agriculture. 

 

Figure 4.  Stakeholder Image Request Time Requirements 

Therefore, three distinct requirements for image response time are 

established. First are users requiring as close to real time imagery as possible, 

with a target response time of 24 hours. Second are users requiring images to be 

updated within a two- to three-week time window. Third are those users requiring 

very infrequent updates, on the order of six months or greater. 
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IV. QUALITY LOSS 

A. TAGUHCI QUALITY LOSS 

Quality is thought of in many ways, but for the sake of this paper, the 

definition will be narrowed to be only that which is measurable through an 

association with a function. By defining quality in this sense, one can interpret 

quality to be a property of a function. This means that quality is then deemed to 

be conformance to performance(s) for that function as required through a set of 

specifications. Functions have a performance and each performance has a 

quality. Therefore, each function can be completely defined by the sum of their 

performances and qualities. Generally speaking, when goods or services are 

within the specification, they are considered to be of high quality; conversely 

when goods or services are outside of their specification, they are considered low 

quality. To be within a specification means all the pieces where built to within the 

drawing tolerances and assembly of the product was accomplished in such a 

way that the product performs as intended. When products are built outside of 

the specification, it can lead to less reliability or in many cases a defective 

product straight off the assembly line. Quality is an important characteristic to 

have, as one industry saying says: “the quality is remembered long after the price 

is forgotten.” (Langford 2012)  

In the 1980s, a Japanese engineer and statistician named Genichi 

Taguchi proposed a different way to view quality. Taguchi proposed viewing 

quality as it relates to cost and therefore it could be measured in exclusively 

monetary terms. This loss accrues not only to the designer, developer, and 

manufacturer but also to the customer, user, and broadly to society as a whole. If 

one where to abstract and aggregate, this could be viewed as a seller in a buy-

sell relationship (Langford 2012). This change of viewing the abstract idea of 

quality of a product into that of monetary terms was a paradigm shift in the 

decision-making process for managers of a factory. Now, if Taguchi’s 

methodology worked, managers could determine real cost benefits analysis on 
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manufacturing facility and process improvements to determine when changes 

would pay off (2012). This is a key benefit to the systems engineer who needs to 

convince management that quality improvements will be cost effective for the 

company. 

Taguchi also changed the view of quality that assumed that if a product 

were anywhere inside the specifications, it was a uniformly good quality product 

(2012). Instead, Taguchi believed where the customer became increasingly 

dissatisfied with the product, the further it got away from the precise target 

specification. Taguchi realized that for each quality characteristic, there exists a 

unique function that defines the relationship between economic loss and the 

deviation of the quality characteristic from its target value. However, since would 

take too much time and effort to find these unique functions for each quality 

characteristic, Taguchi found that a quadratic representation of the quality loss 

function to be efficient and easy (2012). This simplified the mathematics and time 

required to find countless unique loss functions but provided better 

approximations to represent a customer’s dissatisfaction with a product’s 

performance compared to the traditional binomial good/bad quality determination. 

The quadratic curve is centered on the target value, which provides the optimum 

performance in the eyes of the customer. It should be noted that identifying the 

target value is not easy, and at times a designer must make a best guess 

(Langford 2012).  

There are three general types of quality loss functions: nominal-the-best, 

smaller-the-better, and larger-the-better (Taguchi, Chowdhury, and Wu 2005). 

Nominal-the-best characteristic is the type where a finite target value is desired. 

For nominal-the-best, there are usually lower and upper specification limits. 

Examples in manufacturing of products that are nominal-the-best are: output of a 

voltage from a battery, dimensions of a part (length, thickness, weight, density, 

and height). 

Smaller-the-better characteristics are the type where a minimum target is 

desired, the ideal being zero. For smaller-the-better, there is not normally a lower 
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specification boundary, but often there will be an upper boundary. Examples in 

manufacturing of products that are smaller-the-better are: wear on a component, 

electrical noise in a circuit, or heat loss.  

Larger-the-better characteristics are the type where a maximum target is 

desired, the ideal value being infinity. Conversely to smaller-the-better, there is 

usually no upper bound for larger-the-better, but often one will find a lower 

boundary specification limit. Examples of larger-the-better in manufacturing are: 

material strength, horse power from an engine, or storage density of a battery. 

These loss functions offer a way to quantify the benefits achieved by 

reducing variability around the target. It can be used as a tool to help justify 

decision makers to improve a process that is already meeting specifications. 

 For a product with a target value of m and deviation from m 0 , from most 

customers’ point of view, 0m    represents the deviation that functional failure of 

the product or component occurs. When a product is manufactured with its 

quality at the extremes of 0m    or 0m    , some countermeasures must be 

employed by the average customer. The loss function L with a characteristic of 

nominal-the-best is described as the following Equation 4. 

 
2 0

2

0

( )    
A

L k y m k  


  (4) 

where, k is a proportionality constant, y is the output, m is the target value of y, 

0  is the variation from m and 0A  is the cost of the countermeasure. 

The loss function for the smaller-the-better case can also be determined, 

but is slightly different than the nominal-the-best case. For the smaller-the-better, 

where the target is zero, the loss function is described as shown in Equation 5. 
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where, k is a proportionality constant, y is the output, 0A  is the consumer loss 

and 0y  is the consumer tolerance. 
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For larger-the-better case, the target is infinity and the loss can be written 

as the following Equation 6. 

 2

0 02

1
   L k k A y

y
    (6) 

where, k is a proportionality constant, y is the output, 0A  is the consumer loss 

and 0y  is the consumer tolerance. 

B. MINIMUM QUALITY LOSS 

Taguchi’s work was primarily focused in the manufacturing industry. 

However, it is desirous to be able to apply quality loss in other applications. 

Langford proposes a general quality loss function, which can be used outside of 

the manufacturing industry for the rest of the lifecycle stages of a product that 

includes conceptualization, research, development, integration, operations, 

maintenance, and disposal (Langford 2012). While Taguchi focused primarily on 

quality as a performance measure, there are at least seven distinct but not 

mutually exclusive performance measures that include: effectiveness, efficiency, 

quality, productivity, quality of work life, profitability, and innovation (Langford 

2012). Thus, performance can be viewed in different meanings in different 

situations for different systems. When referring to more general energy (joules or 

electron volts), mass (kilograms or pounds), material wealth (e.g., dollars), or 

information (bits of data) (EMMI) performance can be defined as net work 

accomplished over a time period (t). Since Taguchi’s general smaller-the-better, 

larger-the-better, and nominal-the-best characteristics appear in other 

applications, a general quality loss function is developed for broader application 

in managing quality characteristics regardless of domain characteristics, inputs 

and outputs, and irrespective of preference or specifics for any discipline or field 

(Langford 2012). 

Minimum quality loss was developed by Taguchi as a quadratic for quality, 

but it can be applied more generally in terms of Pareto-efficient negotiations. 

Pareto-efficient negotiations are “based on the principle that one-sided benefit to 



 27 

a party to a negotiation results in an inequitable distribution of losses. So from a 

stakeholders’” perspective, losses are exchanged as benefits and losses based 

on the negotiated settlement of the specification (Langford 2012). Therefore the 

“agreement between two stakeholders is defined as the position whereby neither 

side to a negotiation has an unfair” or disproportionate advantage (Langford). 

Therefore, “assuming an idealized negotiation,” Figure 5 shows “where two 

parties incur equal losses about a center point target value m (Langford).” 

 

Figure 5.  Pareto-efficient Efficient Negotiation (from Langford 2012, 336) 

In Figure 5, the minimum loss is defined as the “target value of the critical 

performance characteristic, m,” which is negotiated “between two strategies with 

opposite demands on quality for a given investment” (Langford 2012). In this 
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example, one party desired that more performance is better, “while the other 

party considers that smaller” performance is required (Langford). This can be 

viewed at as a larger-the-better versus smaller-the-better negotiation. Figure 6 

shows a plot of the larger-the-better and smaller-the-better strategies plotted 

separately with the x-axis representing performance and the y-axis representing 

losses. 

 

Figure 6.  Smaller-the-better (y=x, Seller) and Larger-the-better (y = 1/x, 
Buyer) (from Langford 2012, 337) 

“Simple addition of the two curves x  and 
1

x
, results in a pictorial” 

representation “of negotiation, based on both parties achieving the minimum 
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loss” (Langford, 2012) Figure 7 “shows the resultant quality loss function”  

 

(Langford). The resultant minimum “quality loss distribution has a minimum at 

1m   , representing the minimum loss that can be caused after the” negotiation 

(Langford). 

 

Figure 7.  Combing Two Loss Distributions That Compete for a Definitive 
Target Value, m (from Langford 2012, 337) 

The minimum loss in Figure 7 represents the most effective performance 

of the product within the product’s specific environment, given the conflicting 

constraints of smaller-the-better and larger-the-better. The “goal of the 

negotiations is to minimize the total system losses due to and during” the 
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lifecycle of the products performance (Langford 2012). It is noteworthy that there 

are infinitely many “quality loss functions, each with a minimum loss determined 

by cooperative negotiation between” a “buyer and” a “seller” (Langford). 

However, “there is only one Pareto-efficient quality loss function that” optimizes 

“the minimum loss” for any negotiation (Langford). Figure 8 shows an example of 

different, less effective quality loss functions for a given performance. 

 

Figure 8.  Pareto-efficient Quality Loss Function Optimized for Minimum 
Loss (from Langford 2012, 338) 

C. GENERAL QUALITY LOSS FUNCTION 

Given the benefits to program managers in decision-making using the 

minimum quality loss function, it is beneficial to find a general quality loss 
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function. Next, a derivation of the general quality loss function is shown, based 

off Choi and Langford work (2008). 

1. Assumptions 

According to Langford, there are seven assumptions made to develop a 

general quality loss function: 

1. The total quality loss ( ( )nL x  ) consists of the stakeholders’ loss plus 

unknown losses. 

2. If the level of quality equals the target value of the quality (i.e., m), 
the total quality loss is to be zero (or the minimum loss that is 
inherent in the system). 

3. If the acquisition phase is production and deployment, the value of 
shape parameter n is equal to 2. 

4. The minimum value of a shape parameter is close to zero and the 
value of the shape parameter in the concept refinement phase of 
the acquisition phases varies from 0 to 1. 

5. When the acquisitions phases are the technology development or 
system development and demonstration phase, the range value of 
shape parameter varies from greater than one to less than two. 

6. After the production and deployment phase, the value of the shape 
parameter is greater than two. 

7. The probability distribution of the quality response remains the 
same regardless of the acquisition phases. (2012) 

2. Notation 

As per Langford (2012): 

 : Baseline cost with a constant value. 

 : If the type of quality characteristic is smaller-the-better, this 
means a proportionality constant of stakeholder’s loss per response 
of quality. Additionally, if the type of quality characteristic is larger-
the-better, it means a proportionality constant of developer’s or 
manufacturer’s loss per response of quality.  

1C  : If the type of quality characteristic is larger-the-better, this 

means a proportionality constant of developer’s or manufacturer’s 
loss per response of quality. Additionally, if the type of quality 

bC

sC
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characteristic is smaller-the-better, it means proportionality constant 
of the stakeholder’s loss per response of quality. 

n  : Shape parameter for representing an acquisition phase of a 

weapon system ( 0n   ). 

x  : Response of quality. 

( )nL x  : Total quality loss per piece in the case of shape parameter 

n and quality response x. 

nL  : Expected quality loss per piece in the case of shape parameter 

n and quality response x.(2012) 

3. Derivation of General Quality Loss 

Given the assumption 1 and equation 4, 5, and 6, a “general quality loss 

function can be described as the following Equation” 7 (Langford 2012). Equation 

7 “covers all quality characteristics such as nominal-the-best, smaller-the-better, 

and larger-the-better” (Langford). 

 1( ) n n

n b sL x C C x C x     (7) 

After applying the assumption 2 into Equation 7, one can get equations 8 

and 9 as follows. If the response of quality equals to the target value m, the total 

quality loss is zero (Equation 8) and the result of differentiation for the response 

of quality having the target value is also to be zero as in Equation 9. 

 1( ) 0n n

n b sL m C C m C m      (8) 

 ' 1 1

1( ) 0n n

n sL m nC x nC m       (9) 

If one incorporates the specific value of n into Equations 8 and 9, one 

obtains the general loss function as follows. If the value of n equals to 1, one 

obtains the following results: 

 1 1

1 1( ) 0b sL m C C m C m      (10) 

 ' 0 2

1 1L ( ) 0sm C m C m     (11) 

After solving Equations 10 and 11, one obtains the following: 
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2

1 , 2s b sC C m C C m    

If n equals to 2, one obtains the following results: 

 2 2

2 1( ) 0b sL m C C m C m      (12) 

 ' 3

2 1L ( ) 2 2 0sm C m C m     (13) 

After solving Equations 12 and 13, one obtains the following results: 

4 2

1 , 2s b sC C m C C m    

After iterating in the above manner, one generate a quality loss function as 

shown in Table 2.  

Table 2.   Results of Iterative Process for Generating a Quality 
Loss Function (from Choi and Langford 2008, 36) 

 

As shown in the last row of Table 2, a general quality loss function is 

presented, detailed as follows: 

 

2 ( )

2 ( 2 )

( ) 2

         2 (1 )

n n n n

n s s s

n n n n

s s

L x C m C x C m x

C m C x m x





   

   
  (14) 

 

 



 34 

THIS PAGE INTENTIONALLY LEFT BLANK 



 35 

V. ANALYSIS OF SATELLITE SCHEDULING LOSSES 

A. APPLICATION TO SATELLITE 

Now that a satellite optimization algorithm has been established and a 

general quality loss function determined, the next step is to investigate and 

answer the question “What are the expected losses between optimizing for 

quicker response times versus maximum number of image takes?” Losses can 

be thought of in terms of EMMI, but for the purposes of this analysis, the focus 

will be on material wealth (American dollars). 

As stated in Chapter III, there are three different broad groups of 

stakeholder’s requirements when in relation to response time of image takes. 

The following notations will be used: 

 Group A: Those stakeholders who need images within less than 48 
hours of the request. A target value of 12 hours will be assumed for 
this group. Example stakeholders are warfare, forest fires, and 
severe weather tracking. 

 Group B: Those stakeholders who need images no later than three 
weeks from image take request. A target value of 14 days will be 
assumed for this group. Example stakeholders those trying to track 
tidal action, algal blossoms, ice flows, fisheries, and agriculture. 

 Group C: Those stakeholders who need images on a bi-annual 
more less basis. A target value for of six months is set for this 
operation. Examples stakeholders with these requirements might 
be those performing cartography, regional planning, and landscape 
monitoring. 

B. SATELLITE IMAGERY COSTS 

Next the cost of satellite imagery must be established, to be able to get a 

baseline for the monetary losses. There are not many retailers of commercial 

satellite imagery available in today’s market, with Digital Globe being arguably 

the most dominate with its fleet of five satellites capable of collecting images. 

Digital Globe and other satellite owners distribute their images through multiple 

distribution companies. One of them, Apollo Mapping, can process orders for 

images from nine different satellites and one terrestrial plane. The available 
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satellite images are Worldview-1, Worldview-2, Pleides 1A/1B, GeoEye-1, 

Quickbird, KOMPSAT-3, EROS B, and IKONOS (Apollo Mapping 2014). 

The prices of the images available from Apollo Mapping varies greatly 

depending on the how new the image is and if the user had to specifically 

request it or not. Via a direct phone call with the Apollo Mapping, the pricing 

estimates were provided in Table 3. 

Table 3.   Apollo Mapping Pricing Estimates 

Time Period Cost ($/km^2) 

Less than 1 week $150  

3 week $43  

6 months $20  

 

C. DETERMINING LOSS FUNCTIONS 

Given the above information and loss functions, four distinct loss functions 

are generated and will be used to show application in the decision-making 

process for program managers trying to schedule optimally a satellite 

constellation. 

1. Loss Function for Time Required to Take Image: Group A 

The first loss function to determine is for the time required to fulfill an 

image request for stakeholders in Group A. Group A, as defined above requires 

that images be fulfilled in 24-48 hours in order to be of worth to their application. 

Looking at the three different types of loss functions from Chapter IV, it is easily 

seen that the time required to fulfill an image take is a smaller-the-better type 

characteristic. Therefore, the loss function is defined by Equation 5 above, which 

is restated below: 

2 0

2

0

  
A

L ky k
y

 
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where L is the loss ($), k is the proportionality constant (
2

$

hr
 ), y is the output 

value (hr.), 0A  is the consumer loss ($), and 0y  is the maximum tolerated output 

value (hr.). 

In order to use this equation, the proportionality constant, k, must be 

established. First, 0A  is defined as the consumer loss. This loss will greatly 

depend on the eventual stakeholder who needs the data. For illustrative 

purposes, the stakeholder will be assumed to be a military organization planning 

an operation in need of very near term satellite imagery. Due to the transient 

nature of the proposed enemy, the stakeholder determines that their images 

should be less than 24 hours old and anything older than 48 hours is not useable 

for their purposes. The actual value of this data, on which the entire operation 

hinges on is determined to be $100,000. That is approximately the cost the 

operation would be if the operation were carried out with no loss of life or 

equipment. Therefore, 0A  for this example is set at $100,000. Next, 0y  is 

determined by the stakeholder. Since maximum tolerated time for the image 

request to be returned is 48 hours, that is 0y . Therefore: 

0

2 2 2

0

$100,000 $
43

(48 )

A
k

y hr hr
  

 

Applying k into the loss function, we get: 

2 2 2 2

2

$
43 $43L ky y hr y

hr
  

 

Therefore, the loss function for image take time for Group A is shown in Figure 9. 
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Figure 9.  Loss Due to Quickness of Response: Group A 

2. Loss Function for Time Required to Take Image: Group B 

The second loss function to determine is for the time required to fulfill an 

image request for stakeholders in Group B. Group B, as defined above requires 

that images be fulfilled in two to three weeks in order to be of value to their 

application. Again, this loss function is represented by a smaller-the-better, which 

is defined as: 

2 0

2

0
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L ky k
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 

 

where L is the loss ($), k is the proportionality constant (
2

$

days
 ), y is the output 

value (days), 0A  is the consumer loss ($), and 0y  is the maximum tolerated 

output value (days). 
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The proportionality constant, k, must be again be established. In this case, 

0A  will be different than in case A. For stakeholders in Group B, the 

consequences and therefore the loss for late data is logically lower. For 

illustrative purposes, if the stakeholder is assumed to be a scientific organization 

tracking tidal conditions. Missing images or getting images a few days late will 

not carry as much weight as those items in group B. Since these numbers again 

depend solely on the exact nature of the program and the number of people 

working and expected loss of man hours given missing data, for this example 

numbers will be set. It will be assumed that for week of delayed data, it costs a 

research company $50,000 of wasted time not being able to continue their 

primary research initiative. They need data within a three-week period; otherwise, 

they will miss their primary deadline for their report. Therefore, 0A  for this 

example is set at $50,000. Next, 0y  is determined by the stakeholder. Since 

maximum tolerated time for the image request to be returned is three weeks, that 

is 0y . Therefore: 

0

2 2 2

0

$50,000 $
113

(21 )

A
k

y day day
  

 

Applying k into the loss function, we get: 

2 2 2 2

2

$
113 $113L ky y day y

day
  

 

Therefore, the loss function for image take time for Group B is shown in Figure 

10. 
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Figure 10.  Loss Due to Quickness of Response: Group B 

3. Loss Function for Time Required to Take Image: Group C 

Similarly, for Group C, the loss function for the time required to satisfy 

image requests is a smaller-the-better function, which is: 

2 0

2

0
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L ky k
y

 

 

where L is the loss ($), k is the proportionality constant (
2

$

weeks
 ), y is the output 

value (weeks), 0A  is the consumer loss ($), and 0y  is the maximum tolerated 

output value (weeks). 

The proportionality constant, k, must be again be established. 0A  will 

again change be different than case A and B. For stakeholders in Group C, the 

consequences and therefore the loss for late data is logically lower. For 
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illustrative purposes, if the stakeholder is assumed to be a scientific organization 

making maps. Missing images or getting images a few weeks late will not carry 

as much weight as those items in group B or A. Since these numbers again 

depend solely on the exact nature of the program and the number of people 

working and expected loss of man hours given missing data, for this example 

numbers will be set. It will be assumed that for each week of delayed data past 

months, it costs a research company $10,000 of wasted time not being able to 

continue their mapping operations. They need data within a six-month period, 

otherwise the risk of new development and outdated maps is too high. Therefore, 

0A  for this example is set at $10,000. Next, 0y  is determined by the stakeholder. 

Since maximum tolerated time for the image request to be returned is 26 weeks, 

that is 0y . Therefore: 

0

2 2 2

0

$10,000 $
15

(26 )

A
k

y weeks week
  

 

Applying k into the loss function, we get: 

2 2 2 2

2

$
15 $15L ky y week y

week
  

 

Therefore, the loss function for image response time for Group B is shown in 

Figure 11. 



 42 

 

Figure 11.  Loss Due to Quickness of Response: Group C 

4. Loss Function for Number of Image Request Satisfied 

Lastly, the loss function for the number of satisfied image requests must 

be established. For the owner of the satellites, the number of image requests 

satisfied relates directly to how much profit they make; therefore, it is a larger-

the-better function. From Equation 6, larger-the-better loss function is 

represented by the following function: 

2

0 02

1
   L k k A y

y
 

 

where L is the loss ($), k is the proportionality constant (
2$ Number images ), y is 

the output value (number images), 0A  is the consumer loss ($), and 0y  is the 

minimum tolerated output value (number images). 
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In order to use this function, the proportionality constant must again be 

defined. Establishing 0A  from the companies perspective is a challenging order. 

Due to the nature of the commercial business, getting their operating costs or 

internal limits on the number of satisfied images captured each day is 

challenging. Therefore some basic assumptions are made to set 0A . First, this 

exercise will assume one image is 1 2km  in size. Next, according to Digital 

Globe, we see that Worldview-2, Digital Globe’s newest satellite, is capable of 

taking images of 1,000,000 2km  area per day, which means they can accomplish 

about 1,000,000 images per day. The second assumption required it how much a 

distributor like Apollo Mapping is willing to lose in daily capacity to meet special 

user demands. This research will assume it is willing to only operate at half 

capacity on any given day, or to take 500,000 images in a day. Also, noting that 

the cost of an image varies greatly depending if a customer is demanding it on a 

short time scale, we will assume that Apollo Mapping projects its costs at the 

highest cost scale. Therefore, 0A  is equivalent to $150 per image. 0y  as defined 

above is set at 500,000 images per day minimum capacity. Therefore, k is shown 

to be:  

2 2 13 2

0 $150(500,000 ) 3.75 10 $ number imagesk A y images x  
 

Applying k into the loss function we get: 

13
13 2

2 2 2 2

1 1 $3.75 10
3.75 10 $ number images

number images

x
L k x

y y y
  

 

Therefore, the loss function for the number of images is shown in Figure 12. 
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Figure 12.  Loss Function for the number of Images per Day 

D. DETERMINING MINIMUM QUALITY LOSS 

After the individual loss functions are generated, the next step is to 

combine the loss functions, by adding them together, to get the optimal loss 
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Figure 13.  Group A Minimum Loss 

 

Figure 14.  Group B Minimum Loss 
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Figure 15.  Group C Minimum Loss 

Analysis of Figures 13, 14, and 15 provides insight into the optimization of 

the satellite scheduling problem. In Figure 13, Group A stakeholders (response 

time less than 48 hours) minimum loss function is determined to be $14,500. At 

that point in the negotiations, both parties are equally receiving losses and will be 

satisfied with the result of the negotiations. The values for the minimum loss for 

Group A is an average system response time of 13 hours and average number of 

images to be 72,000. In Figure 14, Group B stakeholders (response time less 

than three weeks) minimum loss function is determined to be $8,000. At that 

point in the negotiations, both parties are equally receiving losses and will be 

satisfied with the result of the negotiations. The values for the minimum loss for 

Group B is an average system response time of six days and average number of 

images to be 100,000. In Figure 15, Group C stakeholders (response time less 

than six months) minimum loss function is determined to be $2,700. At that point 
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in the negotiations, both parties are equally receiving losses and will be satisfied 

with the result of the negotiations. The values for the minimum loss for Group B 

is an average system response time of 10 weeks and average number of images 

to be 180,000. 

For items of higher priority in which the images themselves cost more 

money, the expected minimum loss is higher. Given that the response time is so 

much shorter and fewer images in total are taken that general trend seems 

logical. That pattern, however, does not agree with De Floria’s conclusion that 

the m value for optimizing for both period and the number of image takes are 

akin (2006). Since the time required for the system to respond is a smaller-the-

better loss function and the number of data takes is a larger-the-better response, 

those two factors are in opposition to each other. It is only when the minimum 

loss for the system as a whole is modeled together that a weighting factor can be 

places on the optimization of the algorithm. Also, since loss functions are 

established, it is possible to evaluate different optimization algorithms against 

these two factors to determine if the results are providing a minimum loss to all 

stakeholders. 
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VI. CONCLUSIONS 

A satellite scheduling algorithm displaying tension between two different 

factors was explored. The general quality loss function was developed, proven 

and four distinct loss functions were developed to investigate the performance of 

a satellite optimization algorithm. The utility of the loss functions is that it puts the 

abstract ideas of user response time and number of images taken into common 

units of dollars. The individual loss functions were combined to show at which 

point the minimum total system loss is found. This information can be used to 

inform the adjustment of the scheduling algorithm for specific stakeholder use 

cases. The methodology of using loss functions for the purpose of helping 

decision-making in the systems engineering process was investigated and shown 

to have some utility. 

A. FUTURE WORK 

This research can be continued on in two primary methods. First, there is 

a need to find historical data such that the analysis of the developed loss function 

can be proved. Secondly, more precise knowledge of a specific real world user 

case could be established so that a loss function could be developed for that 

application. 
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APPENDIX. QUATERNIONS 

October 16, 1843 William Rowan Hamilton, an Irish mathematician, 

discovered a set of equations used to describe a new algebra, called quaternions 

or Hamilton numbers. Hamilton, for the decade before his discovery, was trying 

to create the theory of triplets, which he thought would be useful in describing 

rotations in three-dimensional space, similar to how complex numbers can be 

used to represent rotations in two-dimensional space. However, on that fateful 

day in 1843, Hamilton, while walking with his wife Lady Hamilton along the Royal 

Canal in Dublin realized that he would need three complex numbers as part of 

his algebra, not just two. He was so excited by his discovery he carved the 

equation 
2 2 2 1i j k ijk      onto the nearby Broome Bridge (Buchmann 2011). 

Quaternions, at their most basic level, can be used to display tension 

between forces. Satellite motion around the earth is just such a problem that 

quaternions can be employed. The basic two-body equation describes the forces 

between two masses as their gravities interact with each other. If there were no 

other forces acting two bodies in relative motion, then Equation A.1 would 

describe their motion with the following nonlinear second order differential 

equation: 

 1 23
''  where ( )G m m

r


   r r   (A.1) 

where r is the position vector, G is the center of gravity between the two bodies, 

and m represents the masses of the bodies (Curtis 2011). What follows is an 

introduction to quaternion algebra followed by a derivation using quaternions of 

the two-body equation completed by Jorg Waldvogel (Waldvogel 2007). 

A. BASIC QUATERNION ALGEBRA 

Quaternions consist of eight elements 1, , ,i j k     satisfying the relations, 
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2 2 2

2 2 2

1 or, more explicitly

i 1

i j k ijk

j k

ij ji k

jk kj i

ki ik j

    

   

  

  

    

1 is the unit element. In order to work with quaternions, some basic 

quaternion algebra must be established. Quaternions were originally conceived 

with the above definitions and assuming that 0 1 2 3 0 4 where x ,..., xx x i x j x k   x  

are real numbers (throughout the following, bold characters will denote 

quaternions). Hamilton also noticed that imaginary components naturally group 

together and he called this the vector portion while the real part, 0u , is called a 

scalar. So, quaternions can also be written in the form 0 1 2 3[ , x ], with (x , x , x )x x . 

Real numbers, s , will be identified with quaternions [0, ]s , and vectors x  with 

quaternions [ ,0]x  where  denotes the set of all quaternions.  

Quaternion multiplication is generally non-commutative, however, any 

quaternion commutes with a real so that: 

 , ,c c c  x x x   (A.2) 

For any three quaternions , , x y z  the associative law holds so that: 

 ( ) ( )xy z x yz   (A.3) 

The quaternion u may naturally be associated with the corresponding 

vector 4

0 1 2 3(x , x , x , x ) x . For later convenience two particular quaternions are 

introduced: (1) the pure quaternion 1 2 3ix jx kx  x  is associated with

3

1 2 3(x , x , x )x   , and (2) 0 1 2(x , x , x )x   for the vector associated with the 

quaternion without k-component, 0 1 2x ix jx  x . 

The conjugate of the quaternion u is defined as Equation A.4.  

 1 2 3ox ix jx kx   x   (A.4) 

Then the modulus x  of x is obtained from: 
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3

2 2

0

l

l

x


  x xx xx   (A.5) 

As transposition of a product of matrices, conjugation of a quaternion product 

reverses the order of its factors as shown in Equation A.6. 

 xy yx   (A.6) 

The two different kinds of division by 0x  are carried out by left- or right-

multiplication with the inverse 1 
x

x
xx

.  

In addition to the basic algebra presented, one useful application of 

quaternions is representing rotation in 3 . Let 
3

1 2 3(v ,v ,v ) , 1v v    be a unit 

vector defining an oriented rotation axis, and let   be a rotation angle. Define the 

unit quaternion as 
1 2 3: cos ( )sin

2 2
iv jv kv

 
   r . Furthermore, let 3u  be an 

arbitrary vector, and let 1 2 3iu ju ku  u  be associated pure quaternion. Then the 

mapping 1u v rur  describes the right-handed rotation of u  about the axis v  

through the angle   (since r is a unit quaternion we have 1 r r ) (Waldvogel 

2007). 

B. QUATERNION TWO-BODY EQUATION 

In order to show the quaternion two-body motion, Waldvogel uses the 

well-known Kustaanheimo-Stiefel or KS regularization (Kustaanheimo and Stiefel 

1965). The first step of which is to represent the KS regularization as a 

quaternion.  

1. KS Transformation Quaternion Representation 

Therefore a new type of conjugate is introduced named the star conjugate 

and shown in Equation A.7. 
*

x  is defined as the star conjugate of quaternion 

0 1 2 3x ix jx kx   x . 

 *

0 1 2 3: x ix jx kx   x   (A.7) 
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The star conjugate of u can be expressed in terms of the conjugate of u 

as * 1k k k k  x x x . Therefore the following properties are presented and can be 

easily verified: 

2 2* * * * * *( ) , ,( )  x x x x xy y x  

Now to defined the KS regularization in terms of quaternions, consider the 

mapping: 

 
* x u xx   (A.8) 

Star conjugation immediately yields 
* * * *( )u x x ; and hence u is a 

quaternion of the form 0 1 2u iu ju  u , which may be associated with the vector 

3

0 1 2(u ,u ,u )u   . From 0 1 2 3x ix jx kx   x  we obtain  

2 2 2 2

0 0 1 2 3

1 0 1 2 3

2 0 2 1 3

2(x )

2( )

u x x x x

u x x x

u x x x x

   

 

 

 

which is the KS transformation in its classical form. Therefore we have 

Theorem 1: The KS transformation 4 3

0 1 2 3 0 1 2( , , , ) ( , , )x x x x x u u u u    is 

given by the quaternion relation *u xx , where 0 1 2 3x ix jx kx   x , 

0 1 2u iu ju  u , and 
*

x  is defined by Equation A.7. 

Corollary 1: The norms of the vectors u  and x  satisfy Equation A.9. 

 
2

:r u x   xx   (A.9) 

2.  Differentiation 

Since the two-body equation is a second order differential equation, 

differentiation of the Equation A.8 is required. Therefore consider the 

noncommutativity of the quaternion product, the differential of the Equation A.8 

becomes: 
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 * *d d d   u x x x x   (A.10) 

If we consider “bilinear relation” 2 0 2 1 1 2 0 32( ) 0x dx x dx x dx x dx     and take 

the derivative we obtain * * 0d d   x x x x . Combing this results with Equation 

A.10 we arrive at Equation A.11. 

 *2d d u x x   (A.11) 

3. Regularization 

Lastly, the formal procedures for KS-regularizing the two-body equations 

is presented using four parameters 4

0 1 2 3( , , , ) :x x x x x   and quaternion notation, 

0 1 2 3x ix jx kx   x . The planar case is the particular case 

2 3 0 10,  i.e. x x x ix    x . To begin, the differential equations of the two-body 

problem are presented in quaternion form in Equation A.12. 

 
3

'' 0 , ,(')
d

r
r dt

    
u

u u   (A.12) 

where t is time, 3

0 1 2(u ,u ,u )u    is the position of the moving particle, and 

0 1 2u iu ju   u  is the corresponding quaternion, and   is the gravitation 

parameter. 

Also, the energy integral of Equation A.12 is considered in Equation A.13. 

 
21

'
2

h const
r


   u   (A.13) 

where the right-hand side, -h, has been chosen such that 0h   corresponds to 

an elliptic orbit. 

Next a three step approach is used to complete the differentiation. 

a. Step 1: Slow-Motion Movie 

A new fictitious time variable,  , is created such that 

 , ( ) ( ) '
d

dt r d
d




     (A.14) 
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Therefore the ration 
dt

d
 of the two infinitesimal increments is made 

proportional to the distance r. The movie is run in slow-motion whenever r is 

small. Equation A.12 and A.13 are therefore transformed into Equation A.15 and 

A.16: 

 '' ' ' 0r r   u u u   (A.15) 

 
2

2

1
'

2
h

r r


  u   (A.16) 

b. Step 2: Conformal Squaring with Quaternions 

Step two of the regularization procedure consists of introducing new 

coordinates x  according to the KS mapping of Equation A.8 of a 

generalization of Levi-Civita’s conformal squaring, which yields Equation A.17. 

 
2*,  :r   u xx u x xx   (A.17)  

Differentiation by means of Equation A.11 results with 

 
*' *'' *' 2 ,  '' 2 2 ' ,  ' ' 'r    u xx u xx x x x x xx   (A.18) 

Substitution of Equation A.17 and A.18 into A.15 results in Equation A.19. 

 
*'' *' *' *( )(2 2 ' ) ( ' ')2 0    xx xx x x x x xx xx xx   (A.19) 

Equation A.19 is simplified by observing that the second and third term 

compensate as shown in Equation A.20. 

 
*' *'2( ) ' 2 '( ) 0 xx x x x xx x   (A.20) 

Furthermore, by Equation A.2, A.3, and knowing that * * 0d d   x x x x  the fourth 

term of Equation A.19 is simplified as shown in Equation A.21. 

 
2* * *2( )( ' ) 2 ( ' ') 2 '   xx x x x x x x x xx   (A.21) 

By using Equation A.21 and left-dividing by u Equation A.19 becomes Equation 

A.22. 

 
2*'' *2 ( 2 ' ) 0r   x x x   (A.22) 
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c. Step 3: Fixing the Energy 

From Equation A.5, A.11, and knowing that 
2 2* * * * * *( ) , ,( )  x x x x xy y x  

we have derive Equation A.23. 

 
2 2*' *'' ' ' 4 ( ) 4 'r  u u u x x x x x   (A.23) 

Therefore Equation A.16 becomes Equation A.24. 

 
2

2 ' rh  x   (A.24) 

Substituting Equation A.24 into the star conjugate of Equation A.22 and dividing 

by r finally yields Theorem 2. 

Theorem 2: The KS transformation (Equation A.8) with the differential rule 

(Equation A.11) and the time transformation (Equation A.14) maps the spatial 

two-body problem (Equation A.12) into the quaternion differential equation shown 

in Equation A.25. 

 2 '' 0h x x   (A.25) 

Equation A.25 describes the motion of four uncoupled harmonic oscillators with 

the common frequency : / 2h  . 
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